Final Exam - Advanced Linear Algebra M. Math II

24 November, 2022

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100. (Any score above 100 will be rounded down to 100.)
- (iii) You are not allowed to consult any notes or external sources for the exam.

Name: _____

Roll Number: _

- 1. Let A, B be positive operators on a finite-dimensional Hilbert space \mathscr{H} with $A \geq B$ (that is, A B is positive). For $1 \leq k \leq \dim(\mathscr{H})$, show that:
 - (a) (10 points) $\otimes^k A \ge \otimes^k B$;
 - (b) (10 points) $\wedge^k A \ge \wedge^k B$;
 - (c) (5 points) $det(A) \ge det(B)$.

Total for Question 1: 25

- 2. Let \mathscr{H}, \mathscr{K} be finite-dimensional complex Hilbert spaces, and let $L(\mathscr{H})$ $(L(\mathscr{K}),$ respectively) denote the set of linear operators on \mathscr{H} $(\mathscr{K},$ respectively). Note that $L(\mathscr{H}), L(\mathscr{K})$ may be considered as Hilbert spaces equipped with the Hilbert-Schmidt inner product. Let Φ be a linear map from $L(\mathscr{H})$ to $L(\mathscr{K})$, and Φ^* denote the adjoint map.
 - (a) (10 points) Show that Φ is positive if and only if Φ^* is positive.

- (b) (5 points) Show that Φ is trace-preserving if and only if Φ^* is unital.
- (c) (15 points) Show that there are completely positive maps $\Phi_1, \Phi_2, \Phi_3, \Phi_4 : L(\mathscr{H}) \to L(\mathscr{H})$ such that

$$\Phi = (\Phi_1 - \Phi_2) + i(\Phi_3 - \Phi_4).$$

Total for Question 2: 30

3. (20 points) Let A and B be quantum systems with corresponding (finite-dimensional) state spaces \mathscr{H}_A and \mathscr{H}_B . Suppose $|\psi\rangle$ and $|\varphi\rangle$ are two pure states of a composite quantum system with components A and B (and state space $\mathscr{H}_A \otimes \mathscr{H}_B$), with identical Schmidt coefficients. Show that there are unitary transformations U on system A ($U \in L(\mathscr{H}_A)$) and V on system B ($V \in L(\mathscr{H}_B)$) such that $|\psi\rangle = (U \otimes V)|\varphi\rangle$.

Total for Question 3: 20

4. Let \mathbb{C}^n denote the standard *n*-qubit quantum system. For $\lambda \in [0, 1]$, we define the map $D_{\lambda} : L(\mathbb{C}^n) \to L(\mathbb{C}^n)$ by

$$D_{\lambda}(X) = (1 - \lambda) \frac{1}{n} Tr(X) I_{\mathbb{C}^n} + \lambda X,$$

for $X \in L(\mathbb{C}^n)$.

- (a) (10 points) Compute the Choi representation of D_{λ} .
- (b) (5 points) Show that D_{λ} is a quantum channel, that is, a trace-preserving, completely positive map. (It is called the *depolarizing channel*.)

Total for Question 4: 15

- 5. Let $A \in M_n(\mathbb{C})$ and $\Phi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be the map $\Phi(X) = A \circ X$ (where \circ denotes the Hadamard product of matrices.)
 - (a) (10 points) Show that Φ is completely positive if and only if A is a positive-semidefinite matrix.
 - (b) (10 points) Show that Φ is unital if and only if it is trace-preserving.

Total for Question 5: 20